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Introduction 
 
The current orientation toward the structural model of science is still 
in full impetus, not only in metatheoretical analyses, but also in the 
constitution of science itself as the object of these analyses. Such an 
orientation has had as a motivation neither an alternative to the 
previous logical-empiricist and sentential models nor the domination 
of structuralism in the analytical philosophy of the last century. 
Rather, it is motivated by a set of epistemic criteria that became 
normative in the philosophy and evaluation of science in the last 
40-50 years: a) Explanation (along with prediction) became the main 
function of science, and the epistemology and philosophy of the 
science of the last decades had as their central theme explanation and 
a theory of explanation. In the context of this focus, the explanatory 
contribution of the classical (set-theoretic) structures in science could 
not be neglected, even though it is the subject of intense ongoing debate. 
b) The constitutive use of classical and mathematical structures in 
sciences exhibits the potential of categorial unification, intertheoretic 
and interdisciplinary connectivity, and applicability. c) The structural 
fundament generates a predisposition not only to the advanced 
mathematization of sciences, but also to a metatheoretical justification 
for the use of mathematics. Mathematics not only stands as a method, 
but is also a constitutive part of science, due to the mathematical 
structures which can be connected with the investigated structures 
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through various methods, like direct relationing, correspondence, 
or interpretation.  

A structural theory is one within which the relations 
between parts or objects prevails epistemically over the nature, 
individuality, and specificity of the latter. These relations are 
described and defined in a language compatible with formal logic, 
thereby allowing the classical logical operations between 
statements and the formation of classes of models of a theory. Such 
compatibility generates a structural extension of a logical type and 
a sort of continuity with the sentential model of theories. Adopting 
non-formal set theory as a universal language for the empirical 
sciences yields a continuity of language and of conceptual analysis 
used in the metatheoretical models and also provides the 
structural theories with a uniform sense – that is, a universality in 
which the notion of structure becomes essential, distinguishable at 
several levels, and having different natures. revealing four types of 
structures: 1) the logical structures of the scientific methods and 
2) the set-theoretic relational structures (either conceptual or 
physical-empirical) that are created and extended through 
procedures specific to set theory and universal algebras, as well as 
3) the mathematical entities/structures participating in scientific 
theories still in the form of structures (this time mathematical 
structures in Bourbaki sense), and even 4) the internal structure of 
a scientific theory itself1. The continuity and universality specific to 
the structural approach has the potential of apparently 
unproblematic moving to the metatheoretic investigation by 
linking the first-order concepts with those of a superior order 
through the same methods, and also the object of the theoretical 
investigation with the investigation itself, thus integrating them all 
into one structure.  

A particular case of structural metatheoretical investigation, 
but central in the contemporary philosophy of science, is the 
philosophical problem of the applicability of mathematics in 
natural sciences. In this paper, I argue that in the structural 

                                                           

1  In the sense of constructive, not of theoretical content. 
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metamodels of application and applicability of mathematics, the 
reductionist structural approach based on a set-theoretic concept 
of relation of a primary mathematical “type,” cannot prevent putting 
in evidence structures of different natures and epistemologies. 
Moreover, some structures are incompatible with the classical 
ones, with respect to certain epistemic principles specific to the 
applicability of mathematics. This diversity of natures and this 
incompatibility render problematic the justification (at the 
metatheoretical level) of the use of mathematical modeling as a 
main method of scientific investigation. Such justification should 
be, along with representation, an essential function of any 
theoretical model of the applicability of mathematics. 

In the first section, I present a conceptual analysis of Bourbaki 
mathematical structure with an eye toward the classical set-
theoretic concept of structure. Such an analysis brings back into 
discussion the problem of the empirical or non-empirical, formal 
or non-formal nature of the concept and continues with a brief 
presentation of the contemporary structural models of application 
of mathematics, for which I identify a double nature (theoretical-
applicative and metatheoretical). In the second section, I argue for 
the epistemic character of the suprastructure created through the 
structural metamodel, which integrates the source and target structures 
as well as their external relation. I then show that the epistemic 
nature of the suprastructure is incompatible with its set-theoretic 
homogeneity with respect to both nodes and relations, and this 
incompatibility does affect the justification function. Finally, I 
argue that if we give up the idea of suprastructure and keep the 
homogeneity of each of the two corresponding structures, the 
difference between their natures leads to a problem of truth, which 
in turn does affect the justification function of the metamodel. 

 
 

I. Structural application and applicability of mathematics  
 
A first semantic aspect of the common concept of application of 
mathematics in sciences is import. Application of mathematics 
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assumes a multifaceted import consisting of the methodologic 
import, the conceptual one, and also that of the necessary 
mathematical truths. During the history of science, such a general 
application has shaped three classical roles of mathematics, 
namely the constitutive role (for scientific theories), the descriptive 
role, and the inferential role. In this rough conceptual framework, 
the applicability of mathematics (as a property) would mean the 
possibility of performing these roles, but also the success of this 
practice. A refined definition of applicability of mathematics, 
subsumed to an adequate conceptual and theoretical framework, 
is currently a target of the contemporary philosophical accounts of 
applicability of mathematics.  

 
 

I.1. The structures of pure mathematics, unity, 

 and applicability of mathematics  

 
In The Architecture of Mathematics [1950], N. Bourbaki does not 
aim at defining the concept of mathematical structure within a 
pre-established, perhaps formal, theoretical framework, nor at 
developing a theory of structures2. Rather, the description starts 
from an overview on mathematics as a discipline by asking 
whether the autonomous theories emerging and developing 
within mathematics – thus becoming separate (through their goals, 
methods, and even language) – do affect the unity of mathematics. 
Bourbaki’s answer to this question (which was not new at all) is 
negative, and the argumentation is made around the concept of 
mathematical structure.  

For Bourbaki, it is obvious that logical formalism is a system 
of logical rules adapted to the mathematician’s need to build a 
theory as a concatenation of propositions derived from each 
other. This convenience cannot ground a unifying principle for 

                                                           

2  Bourbaki describes the concept of mathematical structure of a certain type 
even before the cited work that is in Volume 1 of the Elements, in terms of 
set theory. 
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mathematics. In addition, the deductive reasoning through 
syllogistic enchainment, also specific to any non-mathematical 
discipline, is no more than a transforming mechanism applied to a 
set of premises, and as such it cannot serve for the characterization 
of those premises nor of the complexity of the various 
mathematical theories.  

Even though logical formalism and axiomatic method seem 
to provide the linking element for the unity of mathematics, 
Bourbaki argues, these two cannot establish this unity, just as 
physics and biology, for instance, cannot be unified just on the 
basis of the experimental method or hypothetic-deductive method 
that they both use. What these methods cannot provide is an 
“intelligibility” of mathematics, which will be responsible also for 
the unity of this discipline; instead, the concept of mathematical 
structure would ensure, in Bourbaki’s view, this unifying intelligibility. 

That said, the concept of Bourbaki structure does not belong 
to a formal system and is not metamathematical but is generated 
from a complete perspective on the content of mathematics. The 
basic idea is to extract the smallest number of independent 
properties (of the relations between the elements of a set from a 
mathematical theory or domain) from which any other property 
can be derived, and to ascertain the applicability of these 
properties to the relations between the elements of other sets 
(including sets from other theories), provided that the nature of 
these elements does not in any way influence the derivation of that 
property. Ignoring the nature of the elements is crucial in defining 
the concept of mathematical structure, which thereby appears as a 
concept applied to the sets of elements of an unspecified nature. 
Mathematical structure is not given a priori but is defined on the 
basis of certain pre-established relations, for which specific 
conditions or properties are formulated explicitly as the axioms of 
that structure. Developing the axiomatic theory of a structure 
means deducing the logical consequences of that structure’s 
axioms by excluding any hypothesis regarding the elements that 
stand in a relation (including their nature).  
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Next, Bourbaki identifies three primary types of mathematical 
structures (called ‘mother-structures’) by the nature of the relations 
established in the base set, namely, algebraic structures (corresponding 
to the relations in the form of laws of composition), order structures 
(corresponding to order relations), and topological structures 
(corresponding to the set-theoretic relations of topological type). 
These three types are recognizable in existent mathematical 
theories, in singular or multiple form. (There are structures whose 
sets of axioms are specific to more than one of the basic types; for 
example, the structures of algebraic topology). 

In Bourbaki’s view, this concept of mathematical structure 
and this typology (admittedly exhaustive) are the premises that 
enable the axiomatic method to validate the unity of mathematics, 
which can justifiably be called a structural unity, given its set-
theoretic fundament with interconnectivity potential. Evidentiating 
a concept common to several mathematical theories (at the level of 
the relations defined within these theories and independent of the 
language and methodology of those theories) grants them – according 
to Bourbaki and his followers – an intelligibility that the axiomatic 
method and necessary truths cannot grant by themselves.  

Written in a period when mathematized physics was at its 
peak and particle physics was in full advent of its discoveries 
“driven” by mathematical formalism, Bourbaki’s work underscores 
the unexpected capacity of mathematical structures to adapt to the 
problems of physics and to contribute to its theoretical content. 
This contribution or constitutive applicability remains fruitful with 
the increasing complexity of the mathematical structures through 
formal procedures that assume emptying the empirical-intuitive 
content of the axioms of the mother-structures. This applicative 
nature of the structures appears as remarkable and unexpected. 
From a philosophical perspective, it seems that there is a 
preadaptation of mathematical structures to physical reality, 
which assumes an intimate relation of mathematics with empirical 
sciences, a relation that seems to be more “hidden” than accepted a 

priori. By anticipating the challenge, ten years hence, of Eugene 
Wigner [1960], known as the syntagma “unreasonable effectiveness 
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of mathematics,” Bourbaki launched an indirect and unformulated 
challenge to philosophers of mathematics and science, limited to his 
concept of mathematical structure: The adaptability of mathematical 
structures to the theoretical content and problems of empirical sciences, 
admittedly unexplained, seems to contradict the formal procedure 
generating these structures, since this procedure relies on emptying 
notions and axioms of any empirical content or influence. On the 
other hand, mathematical structures became not only applicable, but 
constitutive to natural sciences, especially to physics, where a 
mathematized branch assumes not only a mathematical methodology, 
but also a theoretical framework founded on mathematical structures. 
Under these circumstances, Bourbaki asks whether the unity of 
mathematics is the outcome of formal logic or simply this scientific 
fertility. In other words, the unity of mathematics is not one of an 
inert structural skeleton but one of a more complex organism in 
evolution with the scientific environment that influences the organism 
through mutual exchanges. Are mathematical structures abstract, 
inert forms or do they have a certain “life” consigned by their 
applicability? Can we somehow have the certitude of this 
applicability in the future course of the evolution of science? 
Nowadays, these questions have been reformulated, decomposed, 
and refined within the problems of philosophy of applicability of 
mathematics, which has developed as a delimited field of philosophy 
of science beginning in the 1990s around the so-called ‘miracle’ of 
applied mathematics. The nature of the mathematical structure in 
relation with its participation in constitution and problems of 
empirical sciences has remained a subject of debate as enduring as 
ever, and this debate may shed some light on several issues related to 
scientific ‘miracles’ and the success of structural science.  

 
 
I.1.1. The empirical component of mathematical structures 

 
Intelligibility of structural mathematics to which Bourbaki refers 
increases when we assign an empirical influence or interpretation 
to the axioms of the structures.  
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This empirical component of the axioms, which is transmitted 
to the structure and then to the mathematical theory that employs 
that structure, is independent of any mathematical ontology and in 
no way is it subsumed into a Millian-type mathematical empiricism 
or an even weaker one. The same independence can be noted when we 
place the empirical component within an interdisciplinary framework, 
on the basis of the idea that human action of mathematical creation 
cannot be analyzed exclusively philosophically. It is worth mentioning 
the advances that have been made in the new field of perceptual 
mathematics (see especially [Lomas, 2002], [Teissier, 2005], [Ye, 2009] 
and [Mujumdar & Singh, 2016]), which, once articulated in a clearly 
crystallized theory, will pose serious problems to any debate either 
supporting or opposing mathematical empiricism, as long as the tools 
of that predicted theory are multi- or inter-disciplinary. 

Of course, there are mathematical structures elaborated with 
no empirical influence, some of them even resulting from an 
axiomatic intellectual game. Even though they do not have an 
empirical origin, such structures could eventually find their 
applicability in a future mathematical theory based on originally 
empirical structures, or to an empirical science, thus acquiring 
indirectly an empirical component3. Moreover, if the idea of 
acquisition of the empirical component through internal or 
external4 applicability is rejected, Bourbaki’s canonical typology of 
the structures still ensures the empirical component, through the 
fact that those basic structures are present within the complex 

                                                           

3  So many times during the history of science, a structure or mathematical 
theory created independently of any empirical-scientific problem finally 
found its successful application in science, and this fact is also one of the 
premises of E. Wigner [1960] in qualifying the successful general application 
of mathematics as “unreasonable.” On the other hand, even one of the 
pretended solutions to Wigner’s problem (called in the literature “empirical-
origin solution”) invokes interconnectivity of the mathematical concepts, 
among which those having an empirical origin create the link between the two 
universes of different natures – mathematical and empirical. For a succinct 
description of this solution and a well-organized presentation of the classical 
solutions proposed for solving Wigner’s problem, see [Bangu, 2012, p. 135-143]. 

4  With respect to mathematics. 
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structures, and each type of mother-structure reflects an obvious 
empirical influence at the level of representations, actions, 
phenomena, or objects as follows: the laws of composition reflect 
counting, collecting, adding, multiplying, composing, etc.; order 
axioms reflect quantitative and magnitude order, comparison, 
hierarchy, etc.; topological axioms reflect spatial surrounding and 
vicinity, isolation, proximity, form, limit, and continuity. 

Generally, the structures of elementary mathematics reflect 
human experience, and this fact became paradigmatic. Mathematics 
starts from the experience of human activities5 by creating its primary 
structures through the abstractization of this experience and 
extending them through logical formalism and the axiomatic method. 

 
 

I.1.2. Mathematical structure: formal or non-formal? 

 
The empirical component of the typological concept of mathematical 
structure (Bourbaki) seems to “alter” the formal nature of the concept 
described through the necessity of the logical-formal treatment. Even 
though the extension of the concept as an equivalence class or 
category seems to free it from this empirical component, question 
remains open as to whether its nature is formal, non-formal, or 
somehow mixed. On this theme, we could draw a parallel with the 
Fregean view on the semantic applicability of mathematics, which is 
based on second-order predicative logic: For Frege, mathematical 
statements are not statements about physical objects, but about 
conceptual extensions of concepts (such as classes, properties, etc.) 
regarding those objects. Mathematics does not state laws of nature, 
but rather, laws of the laws of nature; mathematics cannot be applied 
to an empirical context, but to a thought about an empirical context. 
Meanwhile, the logic of mathematical propositions remains formal, 
even if we can assign to them indirect references6. By ignoring the 

                                                           

5  Refer also to the empirical Babylonian mathematics, in studies of history 
of mathematics. 

6  For an overview of Frege’s work on the nature of mathematics and its 
entities, focused less on the aspects of his logicist construction and more 
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logicist specificities of the Fregean model and its platonist orientation 
but keeping the analogy, we can say that mathematical structures 
such as classes and extensions have a mere formal nature; however, 
this characterization can be easily rejected if considering Bourbaki’s 
terminology, containing both formal and non-formal terms such as 
‘axiomatic method’ as a structure-generating tool.  

In a critical interpretation elaborated around the concept of 
the Bourbaki structure, L. Corry [1992] advocates for the dual 
formal and non-formal character of the concept. Corry claims that 
the so-called structural character of contemporary mathematics 
reflects clearly a way of doing mathematics, which can be described 
in non-formal terms despite attempts at creating a formal theory 
within which the non-formal idea of a mathematical structure is 
elucidated in a mathematical way. 

Even though, as Corry argues, the dual formal/non-formal 
nature of the mathematical structure does not pose methodological 
and epistemic problems to the practice of pure mathematics, once 
we pass the border into the domain of applied mathematics, the 
unresolved issue of the exact nature of a mathematical structure 
raises fundamental problems to the philosophical accounts dealing 
with the applicability of mathematics. 

 
 

I.2.  The structures of applied mathematics: 

 mathematical, classical, epistemic, pure, or mixed 

 
In structural sciences and standard applications of mathematics7 in 
sciences and everyday life, the rationale of description, representation, 
interpretation, and inference lies in the notion of structure. This 
primary concept of structure does not belong to any complex 

                                                                                                                             

on the problems of ontology, philosophy of applicability, and language of 
mathematics, see [Dummett, 1991]. 

7  I shall call standard application of mathematics an application submitting 
to the scheme of the structural model of application of mathematics, based 
on the structural analogy via morphisms of structures, in the sense of 
Bueno and Colyvan’s [2011] inferential conception of applied mathematics. 
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formal system but is described as a network of objects/nodes/ 
positions connected through relations. These objects have an 
atomic status, and the relations between them are conventional or 
criterial associations. The epistemic prevalence of one set of 
relations or set of objects over the other within the structure 
defines the type of structuralist or respectively non-structuralist 
perspective from which the structure is considered, but this aspect 
counts only at the level of philosophy of science and not as 
concerns science itself and its outcomes, which have been 
confirmed regardless of the theoretical nature or ontology of 
science’s objects or entities.  

Thus, the primary concept of structure reverts to the primary 
concept of relation as an ordered association of some given objects, 
in a trivial set-theoretic sense – namely an ensemble ,S D R= , 

with D non-empty set and ( )n n
R R=  a family of sets of ordered 

n-tuples of elements from D ( n
nR D⊂ ). This primary concept – I 

shall hereinafter call it classical structure, corresponding to the 
sense of static structure of Resnik [1997, p. 202-209] – grounds 
science and structural knowledge, and it is difficult to say whether 
its set-theoretic nature (under non-axiomatized set theory) is 
sufficient to justify the attribute of ‘mathematical’, as long as it 
seems to be more of a mental-psychological concept. The brain 
neurophysiology of humans as well as other species includes 
association as a basic process, either as random association 
(imagination and convention) or on the basis of criteria established 
through observation and perception (pattern recognition, using 
previous knowledge, etc.). This fact raises the question of whether 
the nature of the relations within a classical structure (and 
implicitly the nature of that structure) is mathematical (set-
theoretical) or mental; in the latter case, the association through 
the symbolism of the parentheses would have only the role of a 
merely conventional “transcription.” On one hand, the question is 
important when we consider the problem of applicability 
(including the constitutive one) of mathematics in structural 
science, for this general process means connecting and mutually 



 

CĂTĂLIN BĂRBOIANU 

 

18 

integrating structures from domains of different natures, which 
apparently implies the necessity of a common nature of those 
structures. On the other hand, the question loses its import when 
acknowledging that we haven’t at our disposal a defined concept 
of “mathematical relation” – we know only that is constitutive to 
the notion of mathematical structure. Therefore, it is legitimate to 
ask whether the classical structures can be identified with the 
mathematical ones, with the reservation of a problematic 
acceptance of the same set-theoretic nature for the primary concept 
of relation in both concepts.  

The literature on classical structures is developed more 
regarding structuralism, structural realism, and ontology of 
structures8 and less toward the epistemology of structure with 
respect to structural mathematized science. As concerns the roles 
of mathematics in structural science and the way mathematics 
plays these roles successfully, the epistemological aspect prevails 
over the rest, because the structures are used in a functional mode, 
becoming tools or methods of acquiring knowledge. In what 
follows, I argue that the two distinguished types of structures – 
mathematical and classical (set-theoretic) – have different 
epistemologies when participating in mathematical modeling 
within empirical sciences, even under the hypothesis of a shared 
set-theoretic nature. As a preamble, I shall present in brief the 
structural model of the standard application of mathematics, 
focusing on the nature of the structures involved. 

 
 

I.2.1. The primary structural model of application of mathematics 

 
Pincock [2004] renders central the idea that application of 
mathematics assumes an analogy between mathematical structures 
and certain structures of the physical universe obtained through 
idealization; the concept of structural analogy is represented by 

                                                           

8 See, for instance, influential works such as [Piaget, 1968], [Shapiro, 1997, 
p. 71-108], [Ladyman, 2007], [French, 2014], [Arenhart & Bueno, 2015]. 
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the set-theoretic notion of homomorphism or isomorphism9, as a 
structure-preserving application between two different domains10.  

 

 
 

Fig. 1. The primary structural model of application of mathematics 
 

The motivation for such representation consists, on one hand 
of strengthening the uniform semantics of the mixed11 statements of 
applied mathematics, and on the other hand, of inducing a minimal 
inferential character to the mathematical modeling, which is ultimately 
a means of acquiring new knowledge in the empirical domain. This 
inferential character was missing in the ‘internal relation’ models’12, 
among which Frege’s semantic applicability had solved the problem 
of the uniform semantics in a simple and unobjectionable way. 

The homo/isomorphic function f is an external relation 
between the two domains (assumed to exist a priori) which forms 
the correspondence between the nodes of the structures. The two 
structures – the physical ( frS ) and the mathematical one ( mrS ) – 

are constituted through a process of extraction from a larger 

                                                           

9  Depending on each particular application. 
10  Although Pincock is granted as the author of the theoretic model based on 

structural morphism, there are references to this model in previous works, 
such as Baker [2003], Balaguer [1998, p. 109-112] or Leng [2002]. 

11  Containing both physical and mathematical terms. 
12  The typology of theoretical models of the application of mathematics by 

the nature of the relation established between the physical and 
mathematical domains also belongs to Pincock [2004]. An ‘internal 
relation’ is actually an identity criterion: An internal relation is a relation 
in which an object must stand in order to be that object. The immediate 
example is set membership, which stands as a relation between a set and 
any of its elements. A relation that is not internal is external. Frege’s model 
of semantic applicability, as well as its set-theoretic analog developed by 
Pincock [2004], is an ‘internal relation’ model.  
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structure: the physical structure puts in evidence only the physical 
objects and relations (connections) between them that are relevant 

for the application (descriptively, but also making possible an 
analogy with a mathematical structure conveniently chosen); the 
mathematical structure consists of those theoretical parts from 
within pure mathematics whose results (derivations) will be 
effectively engaged in the application. The first extraction is what 
we call the idealization of the empirical context, which in fact is a 
double idealization – that of the extraction/isolation from a larger 
system and structure, then that through which physical objects are 
granted the status of nodes of the set-theoretic structure by 
canceling their physical complexity. 

A set-theoretic reduction is also operated in the mathematical 
domain because initially the structures being prepared for engagement 
in modeling are those in the classical sense of a Bourbaki structure. 
The three types of mother-structures, described through sets of 
axioms free of empirical content and linked through the axiomatic 
method, can be described set-theoretically as relational structures13 
in an unproblematic way. Such a reduction is not an idealization 
(of the type of the physical one), but rather an equalizing, because 
the lack of empirical content of the structure’s nodes ensures their 
atomic status, and the relations of the structure are defined or 
derived mathematically. 

In such a theoretical model, application of mathematics 
works by inferring an unknown connection (relation) R in the 
physical structure on the basis of the homo/isomorphic character 
of function f. In the mathematical structure mrS , all relations are 

known, either as definitions or logical derivations. If nodes f(x) 
and f(y) stand in a relation in mrS , then x and y stand in a relation R 

in frS , which was not known before the application. The inferred 

relation R is then interpreted in the mixed language of the 
empirical context, thus contributing to its description.  

                                                           

13  Even if algebraic structures involve operative relations. 
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Pincock does not develop further a theory of an external 
relation between the mathematical and empirical domains and 
does not advance a formalism of the corresponding structures or 
of the structural extraction. The structural formalism is approached 
by Bueno and Colyvan [2011] in their theoretical model called 
‘inferential conception of applied mathematics’ (ICAM).  

 
 

I.2.2. The inferential conception of applied mathematics 
 
Even though it is an extension of the Pincock’s primary ‘external 
relation’ model, ICAM is not merely structural exhibiting some 
pragmatic context-dependent characteristics of the process of 
applying mathematics. The core principle of ICAM is that the 
fundamental role of applied mathematics is inferential (even 
though the functions of a mathematical model may be multiple), 
and this role ultimately depends on the ability of the model to 
establish inferential relations between the empirical phenomena 
and mathematical structures. In terms of Bueno and Colyvan, 
ICAM consists of a three-step scheme: 

 

 
 

Fig. 2. ICAM scheme 
 

1. (Immersion) establishing a homo/isomorphic function 
from the empirical context to a convenient mathematical 
structure through which to link the relevant aspects of the 
empirical situation to the appropriate mathematical context14. 

                                                           

14  This function is not unique, and choosing the right one is a contextual 
problem in the charge of the mathematician, depending on the particularities 
of the application. 
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2. (Derivation) Deriving the consequences through mathematical 
formalism within a specific mathematical theory, by using the 
mathematical structures chosen at the immersion step.  

3.  (Interpretation) Interpreting the consequences obtained 
at the derivation step in terms of the empirical context by 
establishing a homo/isomorphic function from the mathematical 
structure to the initial empirical context15. 

 
In this theoretical framework, the primary structural model 

is present at both the immersion and interpretation steps. The 
aspects of surplus of structure – both in physical and mathematical 
domains – remaining outside the process of mathematical 
modeling16 are assimilated through the introduction of the notions 
of partial structures, then through partial homomorphism/ 
isomorphism17. The partial nature of relations and structures 
reflects formally the incompleteness of our knowledge about the 
investigated physical domain and has an epistemic character 
rather than an ontological one. The distinction between the 
immersion and interpretation steps allows different external 
functions to operate independently within the model; these 
functions represent the possibilities of revising the structural 
arrangement, of refining the idealizations, and even of formulating 
new problems related to the original problem, including new 
empirical discoveries. These processes actually take place in the 
applied-mathematics practice.  

The entire structural approach of the application of 
mathematics to an empirical context, from the primary model to 
ICAM (also known as ‘mapping accounts’), is based on the idea of 

                                                           

15  This function is not necessarily the inverse of the immersion function, 
although in many concrete situations it can be. 

16  The former, through the idealization of the physical system, and the latter 
within the derivation step, which assumes the selection of the convenient 
mathematical structure from the larger mathematical context. 

17  This formalism of partial structures and morphisms was developed before 
the work of Bueno and Colyvan [2011], in [French & Ladyman, 1998, p. 51-73], 
[Bueno, French, & Ladyman, 2002] and [da Costa & French, 2003]. 
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a formalized analogy between a domain of mathematical 
structures and a domain of conventional-relational, so-called 
physical, structures This analogy is identified through the 
particularities of the application, but also through the established 
analogy itself, as part of the actual application process. Such 
collaboration and interdependence between the source and target 
domains and their external relation (the morphism function) allow 
the structural model to represent theoretically not only the 
application of mathematics, but apparently also (to a certain 
degree) its applicability.  

  
 

I.2.3. Functions and nature of the structural metamodel 

 of application and applicability of mathematics 

 
There are at least two general targets of investigation of the 
problems of applicability of mathematics, for it is not only the 
success of applied mathematics that stands as an object of the 
research, but also the general use itself of mathematics as a method 
of scientific investigation. As an epistemic-intellectual responsibility, 
this use needs to be justified in the given conditions, i.e., differences of 
ontological, epistemological, and logical natures between the source 
and target domains, as well as the existence of the unsuccessful 
applications. Thus, any theoretical model developed for solving 
the problem of applicability (including the structural ones) should 
have two essential functions: representation (of the processes of 
application of mathematics) and justification (of the application), – 
in other words, establishing a general applicability of mathematics 
independent of any circumstantial factors of a practical-theoretical 
or methodological nature.  

At the beginning of the last decade, philosophy of mathematics 
was still dominated by debates regarding the explanatory role of 
mathematics versus its representational role, explanation being the 
central theme of philosophy of science and epistemology. This 
“explicative” trend has also influenced to some degree the 
motivation for the creation of the structural models of application 
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and applicability of mathematics (especially ICAM), whose authors 
adapted to this trend with an eye on Wigner’s problem. Thus, we 
can view a structural model of application and applicability of 
mathematics from two perspectives, revealing its two different 
natures: on one hand, a general model of reasoning based on pure 
mathematics and applicable to any applied-mathematics problem, 
reverting through instantiation to the classical concept of mathematical 
model dependent upon the particularity of the application (the 
theoretic-applicative nature); on the other hand, a universal model 
representing every possible application, the general process of 
applying mathematics by using its structures, but also the 
structural correspondence between the two domains, that are 
established through the application as well as that assumed a priori 
(the metatheoretic nature). In the theoretic-applicative model, 
explanation (as an important function specific to a dominant 
category of applications) remains at the first level, that of the 
instance of application, In the metatheoretical model, explanation 
also appears at the second level in the form of (metatheoretical) 
justification of the general use of the mathematical method. By 
specifying the two natures of the structural model, we can see that 
the theoretic-applicative model represents the application of 
mathematics while the metatheoretical model represents application 
and applicability of mathematics. 

The justification for applying the mathematical method as a 
function necessary to an adequate theoretical model of applicability 
of mathematics manifests itself through the metatheoretical nature 
of the structural model. 

 
 

II. Different natures of structures in the structural models 
 
In section I.1.2, we revisited the debate on the nature of the 
mathematical structures themselves as being formal or non-formal 
with respect to the empirical content incorporated through the 
constitution of the primary types of Bourbaki structures. In the 
current section, I shall extend this discussion to the suprastructure 
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that is created with the finalization of a mathematical application 
representable through the structural model.  

In the primary model, as well as in the ICAM scheme, we 
deal with processes of constitution of the structures: on one hand, 
the constitution of the structure from the empirical context 
through the associations as relations of the objects conveniently 
establishes a further analogy with the mathematical structure or 
structures participating in the inference; on the other hand, the 
correspondence established between the source and target 
structures creates in turn a structure completing the two existing 
structures and thus creates a suprastructure. Since functions and 
their compositions are representable set-theoretically, the 
suprastructure thus created is also of a classical set-theoretic type 
and includes the participating mathematical structures.  

The question arising is whether, when qualifying the nature 
of these structures, we should consider only the set-theoretical 
aspect, or to consider also the intentional aspect, which is justified 
by the goal- and user-dependence of the mathematical model. 
Regarding intentionality, there is a conventional character of the 
structural arrangement in the target (empirical) domain – the 
physical objects do not stand in defined relations, as is the case 
with mathematical structures, but they are put in relations through 
a mere conventional association (as n-tuples), motivated through 
criteria of convenience18. A conventionalism can be also assigned 
to the mathematical structure at the level of creation of its axioms, 
but this one is of a very different nature – by having a justification 
based more on relevance than convenience. This latter 
conventionalism could be also dissolved if we consider it against 
the necessity of the integration of the mathematical structure into 
an existing logical system (the mathematical theory within which 
the created structure will function). In conclusion, the only 
difference in nature of the mathematical structure and the classical 

                                                           

18  Moreover, the structural arrangement of the target domain may be 
modified as the result of testing the mathematical model (even the ICAM 
scheme allows this change), which strengthens the conventional character 
of the arrangement. 
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structures participating at the structural mathematical modeling 
could result from the different conventionalism of the two types of 
structures at the intentional level. If this distinction is accepted, we 
call the classical structures of the empirical domain and the 
suprastructure created through the theoretical model of 
application epistemic structures since they are constituted with the 
goal of acquiring knowledge in the form of partial relations 
inferred through means of the mathematical model. In this sense, 
mathematical structures will have an epistemology different from 
that of the classical ones, and this epistemology is “located” at the 
level of the relations of the structure. 

We have a difference in nature of the nodes of the structures 
also. The structures created in the empirical context assume sets of 
physical objects, so that we are forced to accept the concept of a set 
(as mathematical or set-theoretic notion) having physical objects as 
elements. The entire structural scheme of application of 
mathematics relies tacitly on this principle, which for M. Steiner 
[1998, p. 22] and Pincock [2004] is unproblematic19. The necessity 
of keeping the set-theoretic nature of a set with physical objects 
despite its physical content is created by the presence and 
functionality of the structural morphism, which is the core concept 
on the basis of which the model works and is defined in set-
theoretic terms.  

In another paper [[name deleted to maintain the integrity of 
the reviewing process], 2017, p. 80-87], I argued that such a 
concept does not meet the two criteria widely acknowledged as 
adequate for a concept of set – namely, individuality (a set must be 
a set of terms, objects, elements, as individuals) and plurality (a set 
must be characterized by a diversity of individuals, not only in a 
logical-numerical sense, but also as an identity criterion). As 
concerns individuality, I have shown that the unavoidable 
systemic interaction of the physical objects in sufficiently large 

                                                           

19  The principle of a set of physical objects is also essential for the ‘internal 
relation’ account sketched also by Pincock [2004], in which applicability is 
reduced to the set membership relation.  



 

THE NATURE OF THE STRUCTURES OF APPLIED MATHEMATICS 

 

27 

systems poses problems to the constitutive differentiation of the 
objects. In other words, delimiting the physical object for 
individualization can be done only spatiotemporally, while the set, 
as a mathematical concept engaged in the practice of pure 
mathematics, is non-temporal. Temporality can affect the plurality 
of a set as well as the systemic relationing/interaction. Thus, a set 
can be only a set of atomic references of those physical objects, and 
individualization through reference – an intentional and 
conventional process – can be done only in case of the elements of 
“pure” sets, through the mathematical definition. In addition, for 
sets containing both physical and mathematical objects, I have 
argued [name deleted to maintain the integrity of the reviewing 
process, p. 87-90] that the diversity (as non-identity, not non-
individuality) of their elements cannot be tested for the sets that 
are described predicatively.  

Despite the above arguments, accepting the principle of a set 
of physical objects at the conceptual level cannot prevent an 
immediate differentiation of the epistemological nature of the 
types of structures participating in the structural model: The 
structures of the empirical domain will have objects with empirical 
content as their nodes, which eventually interact with each other 
in systems outside the structure, while the structures from the 
mathematical domain will have nodes with an atomic status, but 
with no empirical content. The fact that elements of “purely” 
mathematical sets may participate in mathematical theories 
outside the structure is not an analogue of the systemic interaction 
from the physical domain because in the mathematical case, such 
participation does not render problematic the meeting of the 
criteria of individuality and plurality.  

If we still accept the principle of having a set with physical 
objects of a set-theoretic nature, by overviewing the whole suprastructure 
created through the process of mathematical modelling, integrating 
both the empirical and mathematical structures by means of the 
external function (a set, in turn), we shall put in evidence so-called 
“pure” sets (having only mathematical objects as elements), so-called 
“physical” sets (having only physical objects as elements), and so-called 
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“mixed” sets. This differentiation induces non-homogeneity of the 
nature of the constituent substructures, and of the suprastructure 
itself, with respect to their nodes.  

 
 

II.1. The nature of constituent structures 

 and the justification function of the structural metamodel 

 
In what follows, I shall argue that this non-homogeneity of the 
suprastructure (with respect to either nodes or connections) 
created in the structural metamodel of application of mathematics 
does render problematic the existence and/or consistency of a 
metamodel’s justification function. 

By establishing the external function of homo/isomorphic 
correspondence between the source and target structures (whether 
postulated, built, or with proven existence) a suprastructure is 
created on the basis of the set-theoretic nature of the whole 
representation. This suprastructure does exist as a set-theoretic 
object, since the corresponding structures are sets, while external 
function is also a set (of pairs of nodes). However, this set-theoretic 
object also has an epistemic nature. On one hand, its components 
(source and target structures and external function) are constructed 
with the goal of acquiring new knowledge (the relation inferred on 
the basis of the homo/isomorphic character of the correspondence). 
On the other hand, the created suprastructure itself is an epistemic 
object, at a metatheoretical level (as an outcome/result of the metamodel), 
and also at the level of the global practice of applied mathematics. 
Indeed, once a mathematical application has been confirmed as 
successful, the correspondences and interpretations made within 
this application will be used in other new applications as acquired 
confirmed knowledge. Thus, we cannot ignore either the set-
theoretic nature of the suprastructure (as long as the model was 
founded with the concepts of set theory) or its epistemic nature 
(closely related to the constitutive elements, as well as to the goal 
of the theoretical model).  
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However, it is just this dual nature that poses problems, in 
my view, to the justification function of such a theoretical model, 
which, besides representation, should provide a theoretical 
motivation for application and applicability of mathematics. 

In the mathematical domain, the set-theoretic structure 
extracted for application has been obtained through a reduction of 
the Bourbaki structures participating in the relevant mathematical 
theory. This reduction is entirely justified, being actually a 
mathematical equalization with a structure whose relations are 
mathematically defined and whose nodes have an atomic status. 
But the Bourbaki structure has an epistemology different from its 
set-theoretic equivalent (this is why I initially referred to these 
mathematical structures as ‘epistemic’). The existence of an 
empirical content at the intentional level of the creation of the 
mother-structures is one reason, since this empirical content 
vanishes with the set-theoretic reduction. The axiomatic method 
participates in the definition of the types of Bourbaki structures 
and in turn eradicates the empirical content of the axioms; 
however, it is just the logical functionality based on the content 
elimination that ensures the ‘intelligibility’ and unity of 
mathematics as a network of structures. Therefore, the epistemic 
suprastructure created by the structural metamodel, which 
integrates the set-theoretic mathematical structure and not the 
“original” Bourbaki one, will not carry the entire specificity of the 
mathematical method, despite the set-theoretic equalization. Such 
an epistemic inadequacy does affect the justification function of 
the metamodel which, without that component, seems to be one of 
reasoning through analogy and not necessarily through 
mathematical reasoning.  

With regard to the nodes of the structures, the set-theoretic 
suprastructure will have both physical and mathematical objects 
as nodes, which qualifies it as a mixed set and structure. The set of 
physical objects, when accepted, would affect the suprastructure at 
the conceptual-constitutive level, and this poses a problem; 
besides that problem, the existence of mixed sets (either as subsets 
of the total set, or set-theoretic representations of certain 



 

CĂTĂLIN BĂRBOIANU 

 

30 

connections between a physical and a mathematical node) presents 
an additional, special problem. Indeed, not having the certainty of 
the diversity of the individuals within a set, we will not have any 
guarantee for the existence of some connections already engaged 
in the suprastructure – that is, an identity between two elements 
will dissolve a possible connection between them within a certain 
relation. Let us observe that the only connections holding nodes of 
both natures (physical and mathematical) are20 the connections 
belonging to the binary relation of correspondence f, namely (x, 
f(x)). In this form, these ordered pairs express the choices made for 
creating the theoretical conditions of the modeling, that is, the 
structural correspondence. Although conventional, these choices 
are also based on previous knowledge. (Some choices, already 
operated in confirmed previous applications, will be maintained as 
credible.) Thus, as a connection, (x, f(x)) has an epistemic nature 
which reflects the particularity of the method used to acquire 
knowledge. Once we express this connection set-theoretically, in 
the denotation {x, {x, f(x)}, since set {x, f(x)} is mixed, that set 
becomes susceptible to failing a test of diversity. Were such a thing 
to happen, connection (x, f(x)) would become senseless or vanish, 
and the entire epistemic construction based on an external relation 
between the two domains would collapse21. Thus, the metamodel 
is again affected in its justification function, for its central method 
itself (the structural morphism thorough conventional correspondence) 
is unsure or unsafe. One more time, the set-theoretic nature and 
the epistemic nature of the suprastructure become incompatible 
with respect to the metatheoretical justification. 

Finally, at the level of the relations/connections in the 
suprastructure, let us observe that that constitutive conventionalism, 
which I mentioned at the beginning of section 2, is of three types: 
1) In the physical structure (including the unknown connections 

                                                           

20  I refer to those connections present in the suprastructure of the theoretic-
applicative model of a represented arbitrary application, because other 
connections between the nodes of this suprastructure might exist outside 
the model, belonging to relations from other applications. 

21  The metamodel degenerates in this case into an ‘internal relation’ one.  
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inferred through modeling), structuring as idealization is made 
through the predicative-type linguistic description (in mixed language), 
and the relations are the result of associations operated on the basis of 
those predications, which are bearers of empirical knowledge, but they 
do not justify in any way the set-theoretic reduction; we may call this 
conventionalism as atomist-idealizationant. 2) In the mathematical 
(classical set-theoretic) structure, all relations are defined in 
mathematical language, being consistent with the deductions and 
definitions of mathematical theories as logical systems; the 
conventionalism of the relations is related only to the reduction of 
the Bourbaki structures; we may call it logical conventionality. 
3) The binary relations of the external correspondence represent 
within the metamodel only the theoretic method that was used22, 
and so we may call this conventionality methodological.  

It is obvious that the three types of constitutional conventionality 
of the structures are different, and moreover, seem to be suitable 
for a hierarchization by the epistemic degree of set-theoretic 
reduction and conventional association. However, such an order 
translates set-theoretically as a second-order relation of the created 
suprastructure, which is not represented in the metamodel. 
Staying only with the nature of the conventionality, the detected 
differences revert to a difference in the epistemologies of the 
connections between the nodes of the suprastructure. The set-
theoretic approach inevitably imposes a homogeneity of the 
atomic components (nodes and connections). We have already 
discussed the problem of the epistemic homogeneity of the nodes. 
Why would an epistemic homogeneity of the connections be 
necessary to a justification function of the metamodel? Because the 
justification of the method of mathematical modeling assumes that 
the constructed metamodel will reflect the particularities of this 
method, and these particularities revert just to the different 
natures of the conventionality of the structural arrangement, 

                                                           

22  Even though I mentioned before that that correspondence of the nodes is 
not entirely arbitrary, being also guided by previous knowledge, this 
knowledge is not represented in the structural metamodel. 



 

CĂTĂLIN BĂRBOIANU 

 

32 

which is described by the nodal connections23. The merely set-
theoretic approach cancels these particularities of the method, 
which are supposed to contribute to the justification of the use of 
the method. Let us notice that set-theoretic homogeneity does not 
pose problems for the representation, but only for the application 
of mathematics (if application of mathematics means only a 
procedure of reasoning through structural analogy) and not for 
applicability of mathematics, which cannot be described exclusively 
set-theoretically. Instead, the justification function of such a 
structural metamodel is affected by the double nature of the 
suprastructure it creates – set-theoretic and epistemic.  

Avoiding this problem would be possible only if we drop 
the idea of structural integration of the two structures – source and 
target – through the structural morphism. By keeping the two 
structures separated, we would at least gain homogeneity within 
each of them (of their nodes, but also of their relations), and we 
would eliminate the problem of mixed sets. However, as I will 
argue further, this position would reveal another problem, that of 
the truth.  

 
 

II.1.1. The problem of truth bearers and transfer of the truth value 

 
To the question of whether truth should be involved in the 
structural models of application and applicability of mathematics, 
I give a positive answer which I support with two arguments. The 
first argument is the existence of prediction as a particular goal of 

                                                           

23  Obviously, we have the freedom to create a mathematical representation 
of these differences – if possible – and to define a more complex concept of 
connection. For example, the notion of graph has been generalized (from 
applicative-theoretical necessity) to that of weighted graph, in which the 
edges are assigned numbers. However, the current analysis has as its 
object the metamodel in its current set-theoretic primary form. If one 
comes to a similar generalization for the connections, the structural 
morphism should be redefined, too, as a stronger morphism, to preserve 
also certain relations between the added elements. 
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mathematical models. There is a wide category of predictive 
models, whose goal (prediction) is formulated in terms of a 
phenomenon occurring, of the behavior of a system, or following a 
trajectory, etc. The second argument is the mere use of the 
mathematical truths from the source domain. The primary 
motivation for the creation and use of a mathematical model is the 
epistemic support we gain from mathematical necessity, which we 
cannot deal with directly in the target domain, which is governed 
by contingency. Even if we do not consider mathematical necessity 
as a truth24 on the basis of which we build another truth, the 
motivation of the “guaranteed” epistemic support grants any 
belief or proposition obtained as result of the modeling the quality 
of being a classical truth bearer25. 

By accepting the idea of the truth of mathematical 
propositions and the equivalence that the set-theoretic reduction of 
the Bourbaki structures (seen as sets of axioms) creates, we may 
say – with a certain reserve – that conventional relations 
established in the mathematical domain are truth bearers. The 
same cannot be said about the relations from the target domain, 
the empirical one, where both the known and unknown relations 
are not defined, but interpreted (through criteria of relevance and 
convenience); before this interpretation, the relations have the 
status of a simple set-theoretic-type conventional association; it is 
problematic to state that a relation that is a set is a truth bearer. If 
in the target structure, the relation inferred through modeling 
(unknown prior to application) is not a truth bearer, then the final 
outcome of the application (after its interpretation in the empirical 
context) cannot be assigned a truth value. Even though 
interpretation through referents of the sentence is admitted as a 
truth condition in classical theories of truth, the interpretation of 
the abstract relation in a sentential form cannot stand for a truth 
condition because the interpretation remains in the abstract non-

                                                           

24  By adopting the classical view in which the only mathematical truth is that 
of the analyticity of the proof, and axioms have the same status as that of 
the proven result, namely non-truth-bearer (see [Hempel, 1945]) 

25  But not necessarily true, in the sense of a confirmational truth 
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empirical realm of language26. One can object to this problem by 
saying that regardless of the way we obtain it, the final outcome of 
the modeling, including interpretation, is a mixed sentence, which 
is a traditional truth bearer. However, the issue stands not only in 
the existence of truth bearers in both domains, but also in the 
continuity of the process of transfer of the truth value from the 
source to the target domain, and this continuity is interrupted 
before interpretation of the conventional relations in the empirical 
context, as I argue above.  

The difference in nature of the two truths of the modeling, 
namely the necessary (used) and the contingent (inferred) – 
assuming these do exist – apparently correlated with the quality of 
truth bearer or non-bearer of the corresponding entities in the two 
domains, does not support the opposition of the possible objection 
above, but potentiates it. Admitting the inferential quality of the 
modeling, the inference of a contingent truth from a necessary 
truth raises the epistemic problem of a metatheoretical explanation 
for the cases of empirical information of the inferred truth, an 
explanation which cannot be obtained outside the theoretical 
framework that establishes the nature and properties of the 
external relation between the two domains. However, this 
limitation is problematic, as long as truth is confirmed empirically. 

Besides the difference in nature of the two truths, let us 
observe that the truth value can be transferred from the source 
domain to the target one only through the external homo/ 
isomorphic relation, which is the epistemic base of the inference 
through the modeling. Once the pure mathematical nature of this 
external relation is acknowledged, all its immediate or derived 
properties must be related to the definition of homomorphism, 
which is limited to the set-theoretic relational aspects, while truth 
has no constitutive or derived relation with this definition. Then 
comes the question: On the basis of what argument do we consider 
homomorphism as preserving not only structures, but also the 
truth values assigned in one of the domains?  

                                                           

26  See also Fig. 3. 
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In conclusion, as concerns the transfer of the truth value 
from one domain to another, the continuity of the process of 
transfer seems interrupted in two places: once in the main 
interpretation step of the ICAM scheme (an inacceptable transfer 
in the formal system of the homomorphism), and once again in the 
interpretation in the empirical context of the relation inferred in 
the target structure (the absence of the quality of truth bearer of 
the conventional relation). The problematic processes in light of 
the above arguments are illustrated in the next scheme. 

 

 
 

Fig. 3. Localization of truth bearers and the transfer of the truth value 
in the mapping account 

 
In Figure 3, mcS  is the mathematical Bourbaki substructure 

necessary for application; mrS  is the relational conventional structure 

equivalent ( ≈ ) to mcS ; f is the structural homo/isomorphism; frS  is 

the relational physical structure; R is the unknown relation 
inferred through the model (corresponding to a known relation 
from mrS ); i is the process of sentential interpretation of relation R, 

assigning the subjects 1S  and 2S  to its relata and predicate P to the 

relation R (as connections); sentence 1 2:p S S P  is the mixed 

statement of the result of the double interpretation (in the physical 
structure and in the formulated empirical context). Marks A 
represent the localization of the truth bearers (traditional and non-
traditional) both at the level of abstract entities (relations, 
propositions and sentences) and that of the processes ( ≈ ) that 
allow an unproblematic transfer of the truth value. According to 
this scheme, the transfer of the truth value is interrupted before 
each of the two interpretations, in processes f and i. 
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In conclusion, even if we maintain the source and target 
structures as separate, not integrating them into a suprastructure, 
the different natures of the structures generate a new problem, that 
of the truth, which obviously participates in the justification 
function of the metamodel.  

 
 

III. Conclusions 
 
A theoretical metamodel of application and applicability of 
mathematics cannot ignore a justification function of its own. The 
set-theoretic structural approach, despite its potential of 
representation, cannot contribute sufficiently to a strong 
justification function. In this paper, I have argued that the 
difference in nature of the structures involved in the structural 
metamodels of application and applicability of mathematics poses 
a constitutive-type problem for the justification function. The 
functionality of the theoretical model assumes a commitment to 
the existence of a suprastructure that integrates the source and 
target structures as well as their external relation, and this 
suprastructure has also an epistemic nature. But this epistemic 
nature is incompatible with the set-theoretic homogeneity, with 
respect to both nodes and relations. If we drop the idea of 
suprastructure, by keeping the homogeneity of each of the 
corresponding structures, their different natures pose a problem of 
truth bearers and of the transfer of the truth value from the 
mathematical to the physical domain.  

Eliminating these objections toward a metamodel with a 
valid and functional justification function seems possible only 
through extreme changes in theoretical and conceptual nature, 
which might extend even to the primary concept of relation. Such 
changes also challenge the general representation of the application 
of mathematics, bringing into discussion other available types of 
reasoning besides that of structural analogy. 
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