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Abstract. Determining the computational requirements of formal reasoning is 
a key task in implementing David Hilbert’s foundational program. This paper 
presents a number of results on the syntactical complexity of some versions of 
the language of fi rst-order logic (LFOL), some of which are already known. Two 
versions of LFOL with ineffi  cient (tally) indexing are shown to be context-free, 
and the sets of their sentences (the sub-language LS-FOL) and a version of LFOL 
with effi  cient (positional) indexing are shown to be not context-free. The latt er 
is not even the intersection of a fi nite number of context-free languages but is 
in D-LogSpace and consequently rudimentary in Smullyan’s sense. 

Keywords : Hilbert’s Program; formal grammar; fi rst-order logic; context-free 
language; pebble automaton; logarithmic space. 

It has been argued that fi rst-order logic (FOL) is the fundamental logical 
theory (see Quine 1986 and Wagner 1987). Essentially this argument is based 
on the fact that the language of fi rst-order logic (LFOL) has signifi cant expres-
sive power (suffi  cient for formalizing mathematical reasoning) and admits 
a natural semantics whose set of logical truths is axiomatizable. While the 
semantical properties of LFOL have been extensively investigated by model 
theorists, its syntactical properties have not received the same degree of at-
tention. Nevertheless, the syntax of LFOL is not devoid of philosophical inter-
est. Elsewhere I have argued that the guiding idea of David Hilbert’s foun-
dational program is to derive the basic notions and principles of fi nitistic 
arithmetic from an analysis of the computational requirements of formal-
izing mathematical practice (see Ganea 2010). Numbers are to be identifi ed 
with a special kind of expressions and then their basic theory is to be select-
ed as the optimal description of the syntactical competence with respect to 
those expressions. Given the central role that FOL has in the formalization of 
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mathematics, determining the computational complexity of the various no-
tions and operations presupposed by the syntax of LFOL is an important task 
in the implementation of Hilbert’s Program. A basic problem in this respect 
is the position of the various versions of LFOL within Chomsky’s hierarchy 
and the original purpose of the present paper was to answer three questions 
raised by Harold Levin about this issue1.   

A language L is a sub-set of the set of fi nite strings of symbols from a fi -
nite alphabet X, LX*. If x, y are in X* then x^y is the string obtained by the 
concatenation of x and y,xis the length of x (the number of distinct sym-
bol occurrences in it), and xn is x^x^…^x (n copies of x concatenated).  It is 
usually assumed that any language L includes the null symbol  which acts 
as a neutral element with respect to the operation of concatenation, i.e. x^ = 
^x = x for any string of symbols x. When context permits, the concatenation 
sign will be omitt ed, i.e. x^y will be writt en simply as xy. 

A grammar G is a quadruple (X, Y, S, P), where X and Y are disjoint fi nite 
alphabets, and 
(i) X is the terminal alphabet for the grammar ;
(ii)  Y is the non-terminal alphabet for the grammar, and its elements are also 

called variables ;
(iii)  SY is the start symbol for the grammar ; 
(iv)   P is the grammar’s set of productions. P is a fi nite set of pairs (v, w) with 

v  (XY)* containing a least one non-terminal symbol, while w is an ar-
bitrary element of (X∪Y)*. An element (v, w) of P is usually writt en vw.

Let G be a grammar and y, z in (XY)*. We write yz and say that y di-
rectly derives z, if z can be obtained from y by replacing an occurrence in y 
of the left side of some production by its right side (i.e. G has a production 
vu such that y can be writt en as pvr and z as pur with p, r in (X∪Y)*). * is 
the refl exive transitive closure of . 

The language generated by a grammar G, L(G), is the set of terminal 
strings derivable from its start symbol :

L(G) = {w  : w X* and S *w}.
A grammar G is i) regular if all its productions have the form AaB or AB 

where A, B are variables and a is a terminal symbol ; ii) context-free if all its pro-
ductions have the form Au where A is a variable and u an arbitrary string ; 
iii) context-sensitive if all its productions are length-increasing, i.e. if vuP, 
then uv and iv) unrestricted if no constraint is placed on its productions. 
A language L is regular, context-free, context-sensitive or recursively enumer-
able if it can be generated by a regular, context-free, context-sensitive or un-
restricted grammar. These kinds of languages form the levels of Chomsky’s 
hierarchy, which are known to be ordered by strict inclusion2. Given a formal 

1 The questions I am addressing are formulated in note 5 to Chapter 1 of Levin 1982, pp. 55-56.
2 The basic notions concerning formal languages are well described throughout the fi rst four 
parts of Martin 1997 and the Chomsky hierarchy is introduced in §11.5 (pp. 327-330).  
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language, it is natural to ask about its position within this hierarchy. In par-
ticular, is the language of fi rst-order logic (LFOL) context-free ?

As it is, the question is not suffi  ciently precise. We do not have a standard 
defi nition of LFOL since some authors prefer the Polish notation for logical op-
erators and some do not ; some use distinct symbols for free and bound vari-
ables and some do not. Furthermore, many authors take the alphabet of LFOL 
to be infi nite, containing at least infi nitely many individual variable symbols, 
which prima facie renders the above question meaningless.  These worries can 
however be easily removed. Instead of assuming infi nitely many primitive 
symbols, one can start with a fi nite alphabet and generate infi nitely many 
distinct individual variables by indexing. A similar procedure can be used to 
deal with individual constants, functional constants and relation constants. I 
will take LFOL to be the language over X = {v, c, f, R, a, b, , , } defi ned below.

Defi nition 1. 
(i)  x is an individual variable if and only if there exists n  0 such that x = 

van. 
(ii)  x is an individual constant if and only if there exists n  0 such that x = 

can.
(iii)  x is a functional expression if and only if there exist n, m  0 such that x 

= fanbm.
(iv)  x is a relational expression if and only if there exist n, m  0 such that x = 

Ranbm.
(v)  x is a term if and only if a) x is an individual variable or b) x is an individ-

ual constant or c) there exists a functional expression  fanbm and m terms 
t1,…, tm such that x = fanbm t1… tm .

(vi)  xLFOL  if and only if a) there exists a relational expression Ranbm and m 
terms t1,…, tm such that x = Ranbm t1… tm or b) there exist u, vLFOL and an 
individual variable w such that x = u or x = uv or x = wu.3 

Defi nition 2. 
Let GLFOL be the context-free grammar with X from Defi nition 1 as the ter-

minal alphabet, Y = {V, C, T, A, B, Z, S} as the non-terminal alphabet, and the 
following set of productions :

V  vA, C cA ;
TV ; TC ; TfAZ ; Aa ; AaA ; ZbT ; ZbZT ; 
SRAZ ; SS ; SSS ; SVS.4

3 This defi nition uses Levin’s method of indexing relational expressions given in note 5 to 
Chapter 1 of his book. There are a number of diff erences between what Levin takes to be LFOL 
and the language introduced by Defi nition 1, regarding the use of parentheses, functional ex-
pressions, and the existence of free variables in the formulas of LFOL. These diff erences are not 
essential in that the conclusions of this paper hold if the language is modifi ed to include paren-
theses and exclude functional symbols. The status of the sub-language LS-FOL of fi rst-order sen-
tences (formulas of LFOL with no free variables) is characterized by Proposition 1 below.
4 This defi nition is based on the grammar given by Levin on p. 56 for the set of atomic formu-
las of his version of LFOL.
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Clearly
 
GLFOL generates LFOL as is already implicit in Levin’s discussion. 

Levin conjectured that the sub-language LS-FOL consisting in the sentences 
(closed formulas) of LFOL is not context-free5. That this is indeed the case can 
be shown by an application of  

Ogden’s Lemma.6 Suppose L is a context-free language. Then there exists an 
integer k such that if uL,u k, and any k or more positions of u are desig-
nated as ‚distinguished’, then there are strings x1, x2, x3, x4 and x5 satisfying 
(i) u = x1x2x3x4x5 ;
(ii) x2x4 contains at least one distinguished position ;
(iii) x2x3x4 contains no more than k distinguished positions ;
(iv) x3 contains at least one distinguished position ;
(v) for every l  0,  L. 

Proposition 1. LS-FOL is not context-free.
Proof. Suppose that LS-FOL is context-free and let k be the constant with the 

properties given by Ogden’s Lemma. Let u = vanRabbvanvan be an element 
of LS-FOL such that n  k and suppose that we designate all occurrences of a in 
the string an following the second occurrence of v in u (i.e. the symbols in the 
index of the second occurrence of the bound variable van) as distinguished. 
It is obvious that, no matt er how we choose x1, x2, x3, x4 and x5, it is impossi-
ble that   is a sentence of LFOL. The point is that at least one of x2, 
x4 must be a proper sub-string of the index of the second variable occurrence 
in u ; doubling it will inevitably alter the index of this variable occurrence. 
This eff ect can be partially off set if both x2, x4 are not null and doubling them 
changes the indices of the fi rst two variable occurrences in the same way. But 
then the third variable occurrence in   will no longer be bound by 
the quantifi er and hence  LS-FOL, a contradiction.

Levin asks two further questions about other versions of LFOL (see Levin 
1982, p. 56). The fi rst is whether its context-free character is aff ected by chang-
ing the order of the indices of the various expressions, i.e. by modifying the 
clauses (v-vi) of Defi nition 1 thus :

(v)  x is a term if and only if a) x is an individual variable or b) x is an in-
dividual constant or c) there exists a functional expression  fanbm and n terms 
t1,…, tn such that x = fanbm t1… tn ;

5 What is a closed formula of LFOL ? In order to answer this question it is suffi  cient to defi ne the 
notion of quantifi er scope for the formulas of LFOL. If the quantifi er expression w, where w is 
a variable, occurs in a formula u of LFOL and it is not followed by an occurrence of a, then the 
unique sub-expression v of u immediately following w in u, such that vLFOL, is the scope of 
the occurrence of w in question. The notions of bound occurrence of a variable, bound varia-
ble and closed formula (sentence) of LFOL are introduced in the usual way. The latt er are the ele-
ments of the language LS-FOL.
6 As stated in Martin 1997, p. 244. Proposition 1 is proved independently by several authors (see 
van Benthem 1988, p. 123).
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(vi)  xLFOL if and only if a) there exists a relational expression Ranbm and 
n terms t1,…, tn such that x = Ranbm t1… tn or b) there exist u, vLFOL and an 
individual variable w such that x = u or x = uv or x = wu.  

In other words, in the new version of the language it is the fi rst index of 
a functional or relational expression that expresses its arity. 

The answer to this fi rst question is that the language LFOL is still con-
text-free. It is generated by a grammar with the same alphabet as GLFOL and 
the following set of productions :

V  vA, C cA ; Aa ; AaA ;
TV ; TC ; TfaZT ; ZaZT ; ZB ; Bb ; BbB ;
SRaZT ; SS ; SSS ; SVS.

The second question is whether using positional numerals for the indices 
of expressions changes the context-free character of LFOL. The answer is yes, 
it does. I will use binary numerals just for the arity indices of the functional 
and relational expressions. The individuating indices of expressions will still 
be non-null strings from {a}*. The indices identifying arity will be non-null 
strings from {0,1}* such that their fi rst symbol is 1, i.e. non-zero binary nu-

merals. The number expressed by n = sk…s1 is (n) =  .

Defi nition 3. 
(i-ii) just as in Defi nition 1.
(iii)  x is a functional expression if and only if there exist n  0 and a binary 

numeral m such that x = fanm.
(iv)  x is a relational expression if and only if there exist n  0 and a binary 

numeral m such that x = Ranm.
(v)  x is a term if and only if a) x is an individual variable or b) x is an indi-

vidual constant or c) there exist a functional expression  fanm and (m)  
terms t1,…, t(m) such that x = fanm t1… t(m).

(vi)  xLFOL  if and only if a) there exists a relational expression Ranm and 
(m) terms t1,…, t(m) such that x = Ranbm t1… t(m) or b) there exist u, vLFOL  
and an individual variable w such that x = u or x = uv or x = wu.

Proposition 2. LFOL is not context-free.
Proof.  Suppose that LFOL is context-free and let k be the integer with 

the properties given by Ogden’s Lemma relative to LFOL. Suppose that u = 
Ranmva…va is a string in LFOL with more than k occurrences of va (i.e. (m)  
k), that m is a string of 1’s, and that all and only the occurrences of v in this 
string are designated as distinguished. Again it is impossible to fi nd strings 
x1, x2, x3, x4 and x5 satisfying Ogden’s Lemma with respect to u. Clearly one 
of x2, x4 must be a proper sub-string of the sequence of (m) occurrences of va 
in u. Doubling it will increase the number of occurrences of va in  . 
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It follows that x2 must be a non-null sub-string of m in order to compensate 
for this increase in the number of terms following the relational expression. 
However, doubling any sub-string of m creates a numeral m such that (m) 
 2(m). Consequently in   there cannot be agreement between 
the arity index of the relational expression and the new number of variable 
occurrences (which is strictly smaller than 2(m) given that x4 cannot con-
tain all the occurrences of v in u). Hence  LFOL, a contradiction.

One can also prove that LFOL is not even the intersection of a fi nite number 
of context free languages by using the results in Gorun 1980. Proposition 4 
in that paper states that every bounded language that is the intersection of a 
fi nite number of context-free languages is slip, i.e. its image under the Parikh 
function is a semi-linear set. Let us introduce these concepts :

Defi nition 4. 
(i)  A language L is bounded if there exist words w1,…, wk, k 1, such that 

L ∗ ∗ 
(ii)  A set Aℕk is linear if there are vectors c, p1,…, pr in ℕk such that A = 

{c +   : niℕ, 1ir}. A subset of ℕk is semi-linear if it is a fi nite un-

ion of linear sets.
(iii)  Let X ={a1,…, ar} be an alphabet. The Parikh function 𝒫 :X*ℕr is defi ned 

recursively thus : 𝒫(ai) is the vector with 0 in all positions apart form the 
i-th, where it has the component 1 ; if u, vX*, then 𝒫(uv) = 𝒫(u) + 𝒫(v).

Proposition 3. LFOL is not the intersection of a fi nite number of context free 
languages. 

Proof. Assume the contrary. Then LFOL  {Ra10m(va)n : m, n  0} is also the 
intersection of fi nitely many context-free languages and a bounded language 
as well. Its elements are those expressions of {Ra10m(va)n : m, n  0} with the 
property that n = 2m. If we give its alphabet the ordering 0, a, v, R, 1, we have 
that its image under the Parikh function will be the set {(m, 2m +1, 2m, 1, 1)  : 
m  0}. Clearly this set is semi-linear only if the set {(m, 2m)  : m  0} is (which 
is not) : contradiction.  

On the positive side it can be shown that LFOL is in deterministic loga-
rithmic space (D-LogSpace), i.e. it can be decided by a deterministic Turing 
machine with a read-only input tape and a single work-tape, using at most 
log2(x) squares (cells) of the work-tape for any input x7. 

7 The two-tape Turing machine is described briefl y on p. 45 of Nepomnyaschii 1972 and at 
greater length in chapter 2 of Szepietowski 1994 (pp. 7-14). The main motivation for using a 
work tape distinct from the input tape is to study computations that use less space (i.e. num-
ber of cells scanned on the work tape) than it is necessary to write the input, such as those in 
LogSpace.
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The proof of this fact is based on three observations. First, if in Defi nition 3 
we allow functional expressions, relational expressions, sentential operators 
and quantifi ers to apply to any fi nite number of the resulting pseudo-terms 
or pseudo-formulas, respectively, then the resulting language (which will 
be called pseudo-LFOL) is recognizable by a so-called deterministic pebble 
automaton and therefore by a Turing machine operating within D-LogSpace 
(here we rely on Theorem 3.2.2 of Szepietowski 1994, p. 16). Secondly, check-
ing if a pseudo-formula is obtained from correct applications of the senten-
tial operators and quantifi ers to possibly incorrect atomic pseudo-formulas 
can be done by a simple adaptation of a folklore method of verifying the cor-
rectness of propositional formulas in Polish notation described in Exercise 
1.18 on p. 21 of Mendelson 1997. Thirdly, checking if a pseudo-formula also 
has correct atomic sub-formulas (and thus is a member of LFOL) can be done 
by counting the occurrences of certain symbols in x (namely the occurrences 
of v not preceded by a quantifi er, the occurrences of c and those of f), record-
ing the total obtained in binary notation, subtracting functional arity indices 
from the total and comparing the total with the fi rst relational arity index 
encountered in x (after a total is compared with the index of a relational ex-
pression then it can be discarded and the counting resumes). All these pro-
cedures can be implemented by a deterministic Turing machine operating 
in LogSpace. Let us detail these observations.

Defi nition 5. (i-iv) just as in Defi nition 3.
(v)  x is a pseudo-term if and only if a) x is an individual variable or b) x is 

an individual constant or c) there exist a functional expression fanm and 
pseudo-terms t1,…, tk such that x = fanm t1… tk.

(vi)  x  pseudo-LFOL if and only if a) there exist a relational expression Ranm 
and pseudo-terms t1,…, tk such that x = Ranbm t1… tk or b) there exist u1,…, 
uk  pseudo-LFOL and an individual variable w such that x = u1…uk or x 
= u1…uk or x = wu1…uk.

Lemma 1. The language pseudo-LFOL can be decided by a deterministic 
pebble automaton and therefore by a deterministic Turing machine operat-
ing in LogSpace.

Proof. First we should note that the complex pseudo-terms of LFOL are 
words with the structure 11 … nn (with n  1) where each i is a sequence 
of functional expressions and every i is a sequence of primitive terms (var-
iables or constants). A sequence of pseudo-terms is either a complex pseu-
do-term or a complex pseudo-term prefi xed by a sequence of primitive terms.  
The atomic pseudo-formulas are words with the structure , where  is 
a relational expression and  is a sequence of pseudo-terms, whereas the 
complex pseudo-formulas are words with the structure 11…nn (with 
n  1) where each i is a sequence of sentential operators and quantifi ed 
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variables (such a sequence will be called a ‘prefi x’ from now on) and each i 
is a sequence of primitive pseudo-formulas. 

Also note that the set of primitive terms, the set of functional expressions, 
the set of relational expressions and the set of prefi xes are regular languages. 
For example, the set of prefi xes is generated by the grammar over the termi-
nal alphabet {, , , v, a} with the following productions :

SS, S, SS, S, SV, VvI, IaI, Ia, IaS.

Regular languages are recognized by very simple machines, the fi nite au-
tomata (see §3.3 of Martin 1997, pp. 79-83). Hence, the regular languages in-
dicated above are recognizable by automata which we will denote by 𝒜T, 𝒜F, 𝒜R and 𝒜P respectively. 

A pebble automaton is a strengthened version of a fi nite automaton : it 
is a machine with a two-way input tape and a reading head that can also 
place and remove pebbles (markers) numbered from 1 to k on the cells of 
the tape (these machines are described in §3.2 of Szepietowski 1994, p. 16). 
Each move of the machine is determined by the current internal state of the 
machine and by the contents of the currently scanned tape cell (which apart 
from an input symbol may also include one or more pebbles). A move of the 
machine will consist in moving the reading head, changing the internal state 
and (possibly but not necessarily) placing or removing pebbles from the cur-
rently scanned cell. 

Let us introduce now a series of pebble automata and sketch their opera-
tion. The machines that come later in the series rely on the earlier ones and 
have an increasing number of pebbles.𝒜1 is a 2-pebble automaton that recognizes sequences of primitive terms. 
If an input word does not begin with c or v, then 𝒜1 rejects it. Otherwise it 
places 1 on the fi rst symbol.  If 1 is placed, then 𝒜1 searches the next occur-
rence of c or v to the right of 1’s position and places 2 on the cell left of it. If 
no such occurrence exists, 2 is placed at the end of the input. After 2 is placed, 𝒜1 returns to 1 and behaves like 𝒜T on the word between 1 and 2. If 𝒜T ac-
cepts the word between 1 and 2, then 1 is re-placed on the cell to the right of 
2. If no such cell exists, then 𝒜1 accepts the input.

Similarly one can defi ne a 2-pebble automaton 𝒜2 that recognizes se-
quences of functional expressions (relying on 𝒜F).  𝒜3 is an 8-pebble automaton that recognizes pseudo-terms. If an input 
word does not begin with f, v or c, then 𝒜3 rejects it. If the input begins with 
v or c, then 𝒜3 behaves like 𝒜T. If the input begins with f, then 1 is placed on 
it. If 1 is placed, then 𝒜3 seeks the next occurrence of v or c after it and places 
2 on the cell to its left. If no such occurrence exists, then the input is rejected 
(a pseudo-term must end with a primitive term). After 2 is placed, 𝒜3 returns 
to 1 and behaves like 𝒜2 on the word between 1 and 2. If the 𝒜2 sub-system 
accepts the word between 1 and 2 (otherwise 𝒜3 rejects the input), then the 
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sub-system pebbles (i.e. 3 and 4) are collected and 5 is placed to the right of 
2. If 5 is placed, then 𝒜3 seeks the next occurrence of f after it and places 6 to 
the left of that occurrence. If no such occurrence exists, 6 is placed at the end 
of the input word. If 6 is placed, then 𝒜3 returns to 5 and behaves like 𝒜1 on 
the word between 5 and 6. If the 𝒜1 sub-system accepts the word between 5 
and 6 (otherwise 𝒜3 rejects the input), then its pebbles (i.e. 7 and 8) and peb-
bles 1 and 2 are collected, and 1 is placed to the right of 6. If that is impossi-
ble, then 𝒜3 stops and accepts the input.

One can then defi ne an automaton 𝒜4 that recognizes sequences of pseu-
do-terms (recall that such a sequence is either a complex pseudo-term or a 
complex pseudo-term prefi xed by a sequence of primitive terms), an autom-
aton 𝒜5 that recognizes atomic pseudo-formulas (using 𝒜R and 𝒜4), an au-
tomaton 𝒜6 that recognizes sequences of atomic pseudo-formulas (using 𝒜5) 
and fi nally an automaton 𝒜7 that recognizes pseudo-formulas (using 𝒜P and 𝒜6). The ideas involved are prett y much the same : pairs of pebbles are used 
to mark out segments of the input that are recognizable by previously de-
fi ned automata. In the case of 𝒜5, for example, the input must have the form 
, where  is a relational expression and  is a sequence of pseudo-terms 
with the boundary between the two being the earliest occurrence of f, v or c 
in the input (hence 𝒜5 needs just an extra pebble compared with 𝒜4).

At this point it is possible to invoke Theorem 3.2.2 of Szepietowski 1994, 
which asserts that deterministic pebble automata can be simulated by de-
terministic LogSpace Turing machines, and conclude that pseudo-LFOL is in-
deed in D-LogSpace.

Suppose now that we strengthen Defi nition 5 by adopting clause (vi.b) 
from Defi nition 3, i.e. we impose that negation and quantifi cation are una-
ry sentential operators and conjunction is a binary sentential operator. Call 
the resulting language quasi-LFOL. We have a ready-made D-LogSpace pro-
cedure for determining whether a word in pseudo-LFOL satisfi es this extra 
condition, which we might call molecular integrity. Adapted to our system of 
notation, Exercise 1.18 on p. 21 of Mendelson 1997 introduces the Polish var-
iant of the language of propositional logic with alphabet {, , , , , P, a} 
and the following formation rules : 

(i)  Pan is a well-formed formula (wff ) for every n  1. Each such expression 
is a statement lett er. 

(ii) If  and  are wff s, then so are , , ,  and . 
(iii)   Only expressions obtained by a fi nite number of applications of clauses 

(i-ii) are wff s.
Mendelson then off ers the following criterion for determining whether 

an expression  over this alphabet is a wff  : count each occurrence of a bina-
ry operator as +1, each occurrence of a statement lett er as -1 and each occur-
rence of negation as 0. Then  is a wff  if and only if a) the sum of the symbols 
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in  is -1 and b) the sum of the symbols in any proper initial segment of  
is non-negative. 

This criterion can be immediately adapted to a word x in pseudo-LFOL : 
simply count (from left to right) every occurrence of R as -1, every occurrence 
of  and  as 0 (i.e. simply ignore them !) and every occurrence of  as +1. If 
the total reached for x is -1 and the total for every proper initial segment of x 
up to the last occurrence of R is non-negative, then x has the property of mo-
lecular integrity, i.e. x is in fact an element of quasi-LFOL. In other words, x 
is constructed by proper applications of sentential operators and quantifi ca-
tion to what might be defective atomic pseudo-formulas, i.e. atomic formu-
las in which relation symbols or functional symbols are applied to the wrong 
number of arguments. Clearly Mendelson’s criterion for molecular integrity 
can be implemented by a deterministic Turing machine working in LogSpace. 
After simulating 𝒜7 the machine uses the working tape to record binary nu-
merals for numbers between 0 and the number of occurrences of  in the in-
put (sign can be taken care of by the internal states of the machine). The in-
put is rejected only if the count does not end at -1 or -1 is reached more than 
once. We can thus state

Lemma 2. The language quasi-LFOL can be decided by a deterministic 
Turing machine operating in LogSpace.

What about the last property that qualifi es a word x for membership in 
LFOL, i.e. the fact that functional expressions and relational expressions in x 
apply to the correct number of arguments (a property we might call atom-
ic integrity) ? In order to describe the procedure for determining atomic in-
tegrity I will introduce a parameter (called ‘valence’) for sequences of pseu-
do-terms which gives the number of active arguments in such a sequence. 
Valence is calculated as follows : starting from the right of the sequence, add 
1 for every occurrence of v, c or f ; when encountering a functional expres-
sion, subtract its arity index from the current total. For example, the sequence 
faa10^vaa^ca^fa1^vaaa has valence 2 : there are 5 occurrences of v, c and f in it, 
but the combined arities of the two functional symbols are 3. It can be proved 
by induction that the numerical value in the calculation of the valence for 
a sequence  of pseudo-terms never becomes negative if and only if the se-
quence has a unique decomposition in proper terms (the induction proceeds 
on the number of occurrences of functional expressions in ). 

Defi nition 6. Let 𝒮 be the set of sequences of pseudo-terms. The valence 
function 𝒱  : 𝒮  ℤ is defi ned thus :
(i) 𝒱() = 0 ;
(ii) 𝒱(van^) = 𝒱(can^) = 𝒱() + 1 for every   𝒮 and n  0 ;
(iii) 𝒱(fanm^) = (𝒱() + 1) - (m) for every n  0 and binary numeral m  0. 
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Lemma 3. Let  be a sequence of pseudo-terms. Then there exists a unique 
sequence of terms  = t1 … tk with k = 𝒱() such that  =  if and only if 𝒱() 
 0 and 𝒱()  0 for every   𝒮 that is an fi nal segment of  (i.e. there exists 
a sequence  of primitive terms and functional symbols such that ^ = ). 

Proof. For one direction of this equivalence it can be shown by induction 
on term complexity that 𝒱(t) = 1 for every term t and that 𝒱()  0 for eve-
ry fi nal segment  in 𝒮 of a term t. Suppose there exists a unique sequence 
of terms  = t1 … tk with k = 𝒱() such that  =  and that   𝒮 is a fi nal seg-
ment of . Then either  is a fi nal segment of tk or  = ^tj+1…tk with  a fi nal 
segment of tj and j  k. In either case 𝒱(u)  0.

The converse can be obtained by induction on the number of function 
symbols in . If  is just a sequence of primitive terms, then there is nothing 
to prove : admits a unique decomposition in proper terms (and clearly the 
number of those terms equals 𝒱()). Assume now that  has at least one func-
tional expression occurrence. If so, then there is a leftmost such occurrence, 
i.e.   = ^^, where  is a possibly empty sequence of primitive terms  = 
u1…uk (k  0),  is a functional expression and   𝒮. If the valence of every fi -
nal segment in 𝒮 of  is positive, then the same is true of every fi nal segment 
of  and 𝒱()  0 as well. Since  has fewer functional expression occurrenc-
es than , it follows by the induction hypothesis that  admits a unique de-
composition in proper terms  = t1 … tm =  with 𝒱() = m. But ^ is also a 
fi nal segment of  and hence 𝒱(^)  0. It follows that the arity of , say n, 
is smaller than m and therefore ^ admits the unique decomposition ^ = 
(t1,…,tn) tn+1…tm, whereas  admits the unique proper term decomposition  
= u0…uk (t1,…,tn) tn+1…tm with (k + m + 1) – n members. Furthermore, 𝒱(^) 
= (m – n) + 1, and hence 𝒱() = 𝒱() + 𝒱(^) = (k + m + 1) – n.  

Lemma 3 allows us to devise a procedure for determining the atomic in-
tegrity of a quasi-formula  which consists in calculating the valence of se-
quences of pseudo-terms and comparing it to the arity index of the relation-
al expressions encountered moving from right to left in . If valence ever 
becomes negative (i.e. we reach a term that requires more arguments than 
those that are active), then  does not have atomic integrity. When a rela-
tional expression is reached, if valence agrees with its arity index, then va-
lence is reset to zero and the calculation restarts. If agreement does not ob-
tain, then  lacks atomic integrity.

This procedure can also be implemented by a deterministic Turing ma-
chine operating in LogSpace, since the only signifi cant operations it involves 
are : 
a)  counting from right to left symbol occurrences (namely those of v not pre-

ceded by a quantifi er, of c, and of f) in , with the total reached being in-
scribed (and modifi ed) as a binary numeral on the work tape ; 

b)  subtracting binary numerals on the input tape (arity indices of functional 
terms) from the binary numeral on the working tape ; 
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c)  comparing the binary numeral on the working tape with binary numerals 
on the input tape (arity indices of relational expressions). 
Only the second operation requires some comment. If the reading head 

of the machine reaches a binary numeral on the input tape, then it moves 
left until it detects whether it is a relational or a functional index. In the sec-
ond case, both machine heads return to the rightmost digit of the binary nu-
merals on the input tape and the work tape (call them the i-numeral and 
the w-numeral and their digits the i-digits and the w-digits respectively). 
Subtracting the i-numeral from the w-numeral can be done with the usual 
‘borrowing’ method. While performing the subtraction the machine oper-
ates in two modes, normal and indebted, and the computation starts in nor-
mal mode. 

In normal mode the machine takes the following actions :

(i)  If the scanned i-digit is 0, then both heads move left (the scanned w-dig-
it is left unchanged) and the machine stays in normal mode.

(ii)  If the scanned i-digit is 1 and the scanned w-digit is 1, then the w-digit 
is changed to 0, both heads move left and the machine stays in normal 
mode. 

(iii)   If the scanned i-digit is 1 and the scanned w-digit is 0, then the w-dig-
it is changed to 1, both heads move left and the machine switches to in-
debted mode. 

(iv)   If the end of the w-numeral is reached before the end of the i-numeral, 
then the input is rejected (the quasi-formula examined lacks atomic in-
tegrity). If the end of the i-numeral is reached before or simultaneous-
ly with the end of the w-numeral, then the machine resumes counting 
occurrences of v (if not preceded by a quantifi er), c, f, starting from the 
w-numeral (possibly after erasing all its leading 0-s).   

In indebted mode the machine takes the following actions :

(i)  If the scanned w-digit is 1, then it is changed to 0 and the machine switch-
es back to normal mode. 

(ii)  If the scanned w-digit is 0 and the scanned i-digit is 1, then both heads 
move left (the scanned w-digit is left unchanged) and the machine stays 
in indebted mode.

(iii)   If the w-digit is 0 and the scanned i-digit is 0, then the w-digit is changed 
to 1, both heads move left and the machine stays in indebted mode.

(iv)   If the end of the i-numeral is reached in indebted mode prior to the end 
of the w-numeral, then the working head moves left changing all con-
secutive 0-s to 1-s until it reaches the fi rst 1, which it changes to 0 (un-
less it is the leftmost 1, in which case it is simply erased). If the end of 
the w-numeral is reached in indebted mode (as it would happen when 
subtracting 11 from 10), then the input is rejected.
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Using this method binary subtraction can be performed without any extra 
space being used on the working tape other than the one required for count-
ing in binary the occurrences of the symbols v (not preceded by ), c and f 
in the input. Hence the verifi cation of atomic integrity can also be done de-
terministically in LogSpace. We can therefore state       

Proposition 4.  LFOL is in D-LogSpace. 
All the languages examined here are rudimentary in Smullyan’s sense8. 

This can be shown indirectly by using Proposition 4 and the result in 
Nepomnyaschii 1972 that D-LogSpace is included in the class of rudimenta-
ry languages.
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